On quadratic and almost quadratic p-adic and adelic path integrals in adelic quantum mechanics

Eighth International Conference on p-Adic Mathematical Physics and Its Applications.
WEB CONFERENCE, May 17-28, 2021

Goran S. Djordjević

In cooperation with
D. Delibašić, D. Dimitrijević and M. Milošević

SEENET-MTP Centre \& Department of Physics, Faculty of Science and Mathematics

University of Niš, Serbia

p-Adic and Adelic Path Integrals Quantum Mechanics and Cosmological Inflation

- Introduction and motivation
- p-Adic and Adelic Quantum Mechanics
- p-Adic and Adelic Path Integrals - Quadratic Systems
- Tachyons and Inflation
- Tachyons-From Field Theory to Classical Analogue - DBI and Sen approach
- Tachyon-like inflation in a Rundall-Sundrum approach
- Beyond?

Introduction and Motivation

- The main task of quantum cosmology is to describe the evolution of the universe in a very early stage.
- Since quantum cosmology is related to the Planck scale phenomena it is logical to consider various geometries (in particular nonarchimedean, noncommutative ...)
- Despite some evident problems such as a non-sufficiently long period of inflation, tachyon-driven scenarios, both real and p-adic, remain highly interesting for study.

Adelic Quantum Theory

- Reasons to use p-adic numbers and adeles in quantum physics:
- The field of rational numbers \mathbf{Q}, which contains all observational and experimental numerical data, is a dense subfield not only in \mathbf{R} but also in the fields of p-adic numbers Q_{p}.
- There is an analysis within and over $\boldsymbol{Q}_{\boldsymbol{p}}$ like that one related to \mathbf{R}.
- General mathematical methods and fundamental physical laws should be invariant [I.V. Volovich, (1987), Vladimirov, Volovich, (1994)] under an interchange of the number fields \mathbf{R} and $\boldsymbol{Q}_{\boldsymbol{p}}$.
- There is a quantum gravity uncertainty ($\left.\Delta x \geq l_{0}=\sqrt{6 / \%}\right)$, when measures distances around the Planck length , which restricts priority of Archimedean geometry based on the real numbers and gives rise to employment of non-Archimedean geometry.
- It seems to be quite reasonable to extend standard Feynman's path integral method to non-Archimedean spaces.

Adelic Quantum Theory -p-ADIC FUNCTIONS AND INTEGRATION

There are primary two kinds of analyses on $\mathbf{Q p}: \mathbf{Q} p \rightarrow$ $\mathbf{Q p}$ (class.) and $\mathbf{Q p} \rightarrow \mathbf{C}$ (quant.). Usual complex valued functions of p-adic variable, which are employed in mathematical physics, are :

- \quad an additive character $\chi_{p}(x)=\exp 2 \pi i\{x\}_{p}$,
- locally constant functions with compact support

$$
\Omega\left(|x|_{p}\right)= \begin{cases}1 & |x|_{p} \leq 1 \\ 0 & |x|_{p}>1\end{cases}
$$

Adelic Quantum Theory -p-ADIC FUNCTIONS AND INTEGRATION

- There is well defined Haar measure and integration. Important integrals are

$$
\begin{aligned}
& \int_{Q_{p}} \chi_{p}(a y x) d x=\delta_{p}(a y)=|a|_{p}^{-1} \delta_{p}(y), a \neq 0 \\
& \int_{Q_{p}} \chi_{p}\left(\alpha x^{2}+\beta x\right) d x=\lambda_{p}(\alpha)|2 \alpha|_{p}^{-1 / 2} \chi_{p}\left(-\frac{\beta^{2}}{4 \alpha}\right), \alpha \neq 0
\end{aligned}
$$

- Real analogues of integrals

$$
\begin{aligned}
& \int_{Q_{\infty}} \chi_{\infty}(a y x) d x=\delta_{\infty}(a y)=|a|_{\infty}^{-1} \delta_{\infty}(y), a \neq 0 \\
& \int_{Q_{\infty}} \chi_{\infty}\left(\alpha x^{2}+\beta x\right) d x=\lambda_{\infty}(\alpha)|2 \alpha|_{\infty}^{-1 / 2} \chi_{\infty}\left(-\frac{\beta^{2}}{4 \alpha}\right), \alpha \neq 0 \\
& Q_{\infty} \equiv R, \quad \chi_{\infty}(x)=\exp (-2 \pi i x)
\end{aligned}
$$

Adelic Quantum Theory -

Dynamics of a p-adic quantum model

- Dynamics of \boldsymbol{p}-adic quantum model
- p-adic quantum mechanics is given by a triple

$$
\left(L_{2}\left(Q_{p}\right), W_{p}\left(z_{p}\right), U_{p}\left(t_{p}\right)\right)
$$

- Adelic evolution operator is defined by

$$
U(t) \psi(x)=\int_{A} K_{t}(x, y) \psi(y) d y=\prod_{v=0,2,3, \ldots, \ldots . .} \int_{Q_{v}} K_{t}^{v}\left(x_{v}, y_{v}\right) \psi^{(v)}\left(y_{v}\right) d y_{v}
$$

- The eigenvalue problem

$$
U(t) \psi_{\alpha}(x)=\chi\left(E_{\alpha} t\right) \psi_{\alpha}(x)
$$

Adelic Quantum Theory - path integrals

- The main problem in our approach is computation of p adic transition amplitude in Feynman's PI method

$$
K_{p}\left(x^{\prime \prime}, t^{\prime \prime} ; x^{\prime}, t^{\prime}\right)=\int_{\left(x^{\prime}, t^{\prime}\right)}^{\left(x^{\prime \prime}, t^{\prime \prime}\right)} \chi_{p}\left(-\frac{1}{h} \int_{t^{\prime}}^{t^{\prime \prime}} L(\dot{q}, q, t)\right) D q
$$

- Exact general expression (\bar{S}-classical action)

$$
\begin{aligned}
& K_{p}\left(x^{\prime \prime}, t^{\prime \prime} ; x^{\prime}, t^{\prime}\right)=\lambda_{p}\left(-\frac{1}{2 h} \frac{\partial^{2} \bar{s}}{\partial x^{\prime} \partial x^{\prime \prime}}\right) \times\left|\frac{1}{h} \frac{\partial^{2} \bar{S}}{\partial x^{\prime} \partial x^{\prime \prime}}\right|_{p}^{1 / 2} \chi_{p}\left(-\bar{S}\left(x^{\prime \prime}, t^{\prime \prime} ; x^{\prime}, t^{\prime}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \times \left\lvert\, \operatorname{det}\left(\left.\begin{array}{ccc}
-\frac{\partial^{2} \bar{S}}{\partial x^{\prime} \partial x^{\prime \prime}} & -\frac{\partial^{2} \bar{S}}{\partial x^{\prime} \partial^{\prime \prime} y^{\prime \prime}} & -\frac{\partial^{2} \bar{S}}{\partial x^{\prime} \partial z^{\prime}} \\
-\frac{\partial^{\prime} \bar{S}}{\partial y^{\prime} \partial x^{\prime \prime}} & -\frac{\partial^{2} \bar{S}}{\partial y^{\prime} \partial^{\prime \prime}} & -\frac{\partial^{\prime} \bar{S}}{\partial y^{\prime} \partial z^{\prime \prime}} \\
-\frac{\partial^{\prime} \bar{S}}{\partial z^{\prime} \partial x^{\prime \prime}} & -\frac{\partial^{2} y^{\prime}}{\partial z^{\prime} \partial y^{\prime \prime}} & -\frac{\partial^{\prime} \bar{S}}{\partial z^{\prime} \partial z^{\prime \prime}}
\end{array}\right|_{p} ^{1 / 2} \chi_{p}\left(-\bar{S}\left(x^{\prime \prime}, y^{\prime \prime}, z^{\prime \prime}, t^{\prime \prime} ; x^{\prime}, y^{\prime}, z^{\prime} t^{\prime}\right)\right)\right.\right.
\end{aligned}
$$

Adelic Quantum Theory

- Adelic quantum mechanics [Dragovich (1994), G. Dj. and Dragovich (1997, 2000), G. Dj, Dragovich and Lj. Nesic (1999)].
- Adelic quantum mechanics: $\left(L_{2}(A), W(z), U(t)\right)$
- adelic Hilbert space, $L_{2}(A)$
- Weyl quantization of complex-valued functions on adelic classical phase space, $W(z)$
- unitary representation of an adelic evolution operator, $U(t)$
- The form of adelic wave function

$$
\psi=\psi_{\infty}\left(x_{\infty}\right) \cdot \prod_{p \in M} \psi_{p}\left(x_{p}\right) \cdot \prod_{p \notin M} \Omega\left(|x|_{p}\right)
$$

Adelic Quantum Theory

- Exactly soluble p-adic and adelic quantum mechanical models:
- a free particle and harmonic oscillator [VVZ, Dragovich]
- a particle in a constant field, [G. Dj, Dragovich]
- a free relativistic particle[G. Dj, Dragovich, Nesic]
- a harmonic oscillator with time-dependent frequency [G. Dj, Dragovich]
- Resume of AQM: AQM takes in account ordinary as well as padic effects and may me regarded as a starting point for construction of more complete quantum cosmology (and string theory ...). In the low energy limit AQM effectively becomes the ordinary one.

(ADELIC) QUANTUM COSMOLOGY

- In the very beginning the Universe was in a quantum state, which should be described by a wave function (complex valued and depends on some real parameters).
- There is no Schroedinger and Wheeler-De Witt equation for cosmological models.
- Feynman's path integral method was exploited and minisuperspace cosmological models are investigated as a model of adelic quantum mechanics [Dragovich (1995), G Dj, Dragovich, Nesic and Volovich (2002), G.Dj and Nesic (2005, 2008, 2016)...].

(ADELIC) QUANTUM COSMOLOGY -

 minisuperspace- Adelic minisuperspace quantum cosmology is an application of adelic quantum mechanics to the cosmological models.
- Path integral approach to standard quantum cosmology

$$
\begin{aligned}
& <h_{i j}^{\prime \prime}, \phi^{\prime \prime}, \Sigma^{\prime \prime} \mid h_{i j}^{\prime}, \phi^{\prime}, \Sigma^{\prime}>_{\infty}=\int D\left(g_{\mu \nu}\right)_{\infty} D(\phi)_{\infty} \chi_{\infty}\left(-S_{\infty}\left[g_{\mu \nu}, \phi\right]\right) \\
& <h_{i j}^{\prime \prime}, \phi^{\prime \prime}, \Sigma^{\prime \prime} \mid h_{i j}^{\prime}, \phi^{\prime}, \Sigma^{\prime}>_{p}=\int D\left(g_{\mu \nu}\right)_{p} D(\phi)_{p} \chi_{p}\left(-S_{p}\left[g_{\mu \nu}, \phi\right]\right)
\end{aligned}
$$

Quantum Theory - path integrals

- The main problem in our approach is computation of p adic transition amplitude in Feynman's PI method

$$
K_{p}\left(x^{\prime \prime}, t^{\prime \prime} ; x^{\prime}, t^{\prime}\right)=\int_{\left(x^{\prime}, t^{\prime}\right)}^{\left(x^{\prime \prime}, t^{\prime \prime}\right)} \chi_{p}\left(-\frac{1}{h} \int_{t^{\prime}}^{t^{\prime \prime}} L(\dot{q}, q, t)\right) D q
$$

- Exact general expression (\bar{S}-classical action)

Tachyons

- A. Somerfeld - first discussed about possibility of particles to be faster than light (100 years ago).
- G. Feinberg - called them tachyons: Greek word, means fast, swift (almost 50 years ago).
- According to Special Relativity: $m^{2}<0, \quad v=\frac{p}{\sqrt{p^{2}+m^{2}}}$.
- From a more modern perspective the idea of faster-than-light propagation is abandoned and the term "tachyon" is recycled to refer to a quantum field with $\quad m^{2}=V^{\prime \prime}<0$.

Tachyons

- Field Theory
- Standard Lagrangian (real scalar field):

$$
L\left(\varphi, \partial_{\mu} \varphi\right)=T-V=\frac{1}{2} \partial_{\mu} \varphi \partial^{\mu} \varphi-V\left(\varphi_{0}\right)-V^{\prime}\left(\varphi_{0}\right) \varphi-\frac{1}{2} V^{\prime \prime}\left(\varphi_{0}\right) \varphi^{2}-\ldots
$$

- Extremum (min or max of the potential): $V^{\prime}\left(\varphi_{0}\right)=0$
- Mass term: $V^{\prime \prime}\left(\varphi_{0}\right)=m^{2}$
- Clearly $V^{\prime \prime}$ can be negative (about a maximum of the potential). Fluctuations about such a point will be unstable: tachyons are associated with the presence of instability.
$L\left(\phi, \partial_{\mu} \phi\right)=L_{k i n}-V=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2} m^{2} \phi^{2}+$ const

Tachyons-From Field Theory to Classical Analogue - DBI and Sen approach

- String Theory
- A. Sen - proposed (effective) tachyon field action (for the $D p$-brane in string theory):

$$
\begin{aligned}
& S=-\int d^{n+1} x V(T) \sqrt{1+\eta^{i j} \partial_{i} T \partial_{j} T} \\
& \eta_{00}=-1 \\
& \eta_{\mu \nu}=\delta_{\mu \nu} \quad \mu, v=1, \ldots, n
\end{aligned}
$$

- $T(x)$ - tachyon field
- $V(T)$ - tachyon potential
- Non-standard Lagrangian and DBI Action!

Tachyons-From Field Theory to Classical Analogue - DBI and Sen approach

- Equation of motion (EoM):

$$
\ddot{T}(t)-\frac{1}{V(T)} \frac{d V}{d T} \dot{T}^{2}(t)=-\frac{1}{V(T)} \frac{d V}{d T}
$$

- Can we transform EoM of a class of nonstandard Lagrangians in the form which corresponds to Lagrangian of a canonical form, even quadratic one? Some classical canonical transformation (CCT)?

Classical Canonical Transformation and Quantization

- CCT:T,P $\mapsto \tilde{T}, \tilde{P}$
- Generating function: $G(\tilde{T}, P)=-P F(\tilde{T})$

$$
T=-\frac{\partial G}{\partial P}=F(\tilde{T}) \quad \tilde{P}=-\frac{\partial G}{\partial \tilde{T}} \Rightarrow P=\left(\frac{d F(\tilde{T})}{d \tilde{T}}\right)^{-1} \tilde{P}
$$

- EoM transforms to

$$
\ddot{\tilde{T}}+\left(\frac{\frac{d^{2} F(\tilde{T})}{d \tilde{T}^{2}}}{\frac{d F(\tilde{T})}{d \tilde{T}}}-\frac{d F(\tilde{T})}{d \tilde{T}} \frac{d \ln V(F)}{d F}\right) \dot{\tilde{T}}^{2}+\frac{1}{\frac{F(\tilde{T})}{d \tilde{T}}} \frac{d \ln V(F)}{d F}=0
$$

Classical Canonical Transformation and Quantization

- Choice: $F^{-1}(T)=\int_{T_{0}}^{T} \frac{d X}{V(X)}$
- EoM reduces to:

$$
\ddot{\tilde{T}}+\frac{1}{F^{\prime}} \frac{d \ln V(F)}{d F}=0!!!
$$

- This EoM can be obtained from the standard type Lagrangians $\mathcal{L}=L_{\text {kin }}-V$

Classical Canonical Transformation and Quantization

- Example: $v(T)=\frac{1}{\cosh (\beta T)}$

$$
F^{-1}(T)=\int_{V(x)}^{T} \frac{d x}{V}=\frac{1}{\beta} \sinh (\beta T)
$$

- Generating function: $G(\tilde{T}, P)=-P F(\tilde{T})=-\frac{P}{\beta} \operatorname{arcsinh}(\beta T)$
- EoM: $\ddot{\tilde{T}}(t)-\beta^{2} \tilde{T}(t)=0$
- This EoM can be obtained from the standardtype (quadratic) Lagrangian

$$
\mathcal{L}_{\text {quad }}(\tilde{T}, \dot{\tilde{T}})=\frac{1}{2} \dot{\tilde{T}}^{2}+\frac{1}{2} \beta^{2} \tilde{T}^{2}
$$

Classical Canonical Transformation and Quantization

- Action (quadratic): $S_{c l}=\int_{0}^{\tau} \mathcal{L}_{\text {quad }} d t=\frac{\beta}{2}\left(\left(\tilde{T}_{1}^{2}+\tilde{T}_{2}^{2}\right) \operatorname{coth}(\beta \tau)-\frac{2 \tilde{T}_{1} \tilde{T}_{2}}{\sinh (\beta \tau)}\right)$
- Quantization: Transition (adelic!?) amplitude, $v=\infty, 2,3, \ldots p, \ldots$

$$
\mathcal{K}_{v}\left(\tilde{T}_{2}, \tau ; \tilde{T}_{1}, 0\right)=\lambda_{v}\left(\frac{1}{2 \tau}\right)\left|-\frac{1}{\tau}\right|_{v}^{1 / 2} \chi_{v}\left(-S_{c l}\left(\tilde{T}_{2}, \tau ; \tilde{T}_{1}, 0\right)\right)
$$

- The necessary condition for the existence of a p-adic (adelic) quantum model is the existence of a p-adic quantum-mechanical ground (vacuum) state in the form of a characteristic Ω-function; we get expression which defines constraints on parameters of the theory

$$
\int_{|\tilde{T}|_{p} \leq 1} \mathcal{K}_{p}\left(\tilde{T}_{2}, \tau ; \tilde{T}_{1}, 0\right) d \tilde{T}_{1}=\Omega\left(\left|\tilde{T}_{2}\right|_{p}\right)
$$

Classical Canonical Transformation and Quantization

- Using p-Adic Gauss integral

$$
\int_{|y|_{p} \leq 1} \chi_{p}\left(a y^{2}+b y\right) d y=\left\{\begin{array}{c}
\Omega\left(|b|_{p}\right), \quad|a|_{p} \leq 1 \\
\frac{\lambda_{p}(a)}{|a|_{p}^{1 / 2}} \chi_{p}\left(-\frac{b^{2}}{4 a}\right) \Omega\left(\left|\frac{b}{a}\right|_{p}\right), \quad|a|_{p}>1
\end{array}\right.
$$

- we get (in the case of an inverse power-law potential) $V \sim \tilde{T}^{-n}, n=1$

$$
\lambda_{p}\left(\frac{1}{2 \tau}\right)|\tau|_{p}^{-1 / 2} \chi_{p}\left(-\frac{1}{2 \tau} \tilde{T}_{2}^{2}-\frac{1}{2} k \tau \tilde{T}_{2}+\frac{1}{24} k^{2} \tau^{3}\right) \times I_{\text {Gauss }}=\Omega\left(\left|\tilde{T}_{2}\right|_{p}\right)
$$

Classical Canonical Transformation and Quantization

- Case $1 \quad|\tau|_{p}>1 \quad$ impossible to fulfill
- Case $2|\tau|_{p}=1$

$$
\chi_{p}\left(-\frac{1}{2 \tau} \tilde{T}_{2}^{2}-\frac{1}{2} k \tau \tilde{T}_{2}+\frac{1}{24} k^{2} \tau^{3}\right) \Omega\left(\left|\frac{\tilde{T}_{2}}{\tau}-\frac{1}{2} k \tau\right|_{p}\right)=\Omega\left(\left|\tilde{T}_{2}\right|_{p}\right)
$$

- Case $3|\tau|_{p}<1$

$$
\chi_{p}\left(-k \tau \tilde{T}_{2}+\frac{1}{6} k^{2} \tau^{3}\right) \Omega\left(\left|-2 \tilde{T}_{2}+k \tau^{2}\right|_{p}\right)=\Omega\left(\left|\tilde{T}_{2}\right|_{p}\right)
$$

Quadratic and almost quadratic systems (p-adic case)

- We consider DBI-type Lagrangian in 4d
- $L_{T}=-V(T) \sqrt{1+(\partial T)^{2}}$
- $d s_{p}^{2}=-c^{2}+a(t)^{2}\left(d x^{2}+d y^{2}+d z^{2}\right)$
- $a(t)$ - scale factor, T - tachyon field, $p=1(\bmod 4)$
- Equation of motion
- $\ddot{T}+3 H(t) \dot{T}\left(1-\dot{T}^{2}\right)+\frac{1}{V(T)} \frac{d V(T)}{d T}\left(1-\dot{T}^{2}\right)=0$
- Where, Hubble parameter is $H=\frac{a}{a}$

The method of Darboux

- After performing necessary and straightforward integration

$$
L_{T} \equiv a^{3}(t) \mathcal{L}_{T}=a^{3}(t)\left(-V(t) \sqrt{1-\dot{T}^{2}}\right)
$$

- The method of Darboux
- The problem of reconstructiong an adequate Lagrangian, starting from EoM - the inverse problem.
- The procedure of constructiong a Lagrangian is generaly simplied when:

$$
\ddot{q}+A(q, \dot{q}, t)=0
$$

Equivalent, quadratic Lagrangian?

- $L=\int(\dot{q}-\omega) \Lambda(q \omega t) d \omega-$

$$
\int A\left(\xi, \dot{q}_{0}, t\right) \Lambda\left(\xi, \dot{q}_{0}, t\right) d \xi+\frac{F(q, t)}{t}
$$

- Jacobi multiplayer $\Lambda(q, \dot{q}, t)=\chi_{v}\left(\int \frac{\partial A(q, \dot{q}, t)}{\partial \dot{q}} d t\right)$
- Our initial equation now takes the form

$$
\ddot{T}+3 H(t)\left(1+\frac{2}{3} \frac{\dot{H}(t)}{H^{2}(t)}\right) \dot{T}+\frac{V^{\prime}(T)}{V(T)}\left(1-\dot{T}^{2}\right)=0
$$

Equivalent, quadratic Lagrangian?

$$
\begin{gathered}
A(T, \dot{T}, t)=3 H(t)\left(1+\frac{2}{3} \frac{\dot{H}(t)}{H^{2}(t)}\right) \dot{T}+\frac{V^{\prime}(T)}{V(T)}\left(1-\dot{T}^{2}\right) \\
\Lambda(T, \dot{T}, t)=\frac{a^{3}(t) H^{2}(t)}{V^{2}(T)}
\end{gathered}
$$

- We are close...

$$
\begin{gathered}
L=a^{3}(t) H^{2}(t)\left[\frac{1}{2}\left(\frac{\dot{T}}{V(T)}\right)^{2}+\frac{1}{2} \frac{1}{V^{2}(T)}\right] \\
\dot{\phi}=\frac{\dot{T}}{V(T)}
\end{gathered}
$$

And some examples

$$
\begin{gathered}
\phi=\int^{T} \frac{d T}{V(T)} \\
L=a(t) \dot{a}^{2}(t)\left[\frac{1}{2} \dot{\phi}^{2}+\frac{1}{2 V^{2}(T(\phi))}\right]
\end{gathered}
$$

- If we choose, for example, exp potential $V(T)=V_{0} e^{-\omega T}, \quad V_{0}=$ const,$\omega=$ const
- Inverted harmonic oscilator with time dependent mass

$$
L=\frac{1}{2} m(t) \dot{x}^{2}+\frac{1}{2} m(t) \omega^{2} x^{2}
$$

We get the final form

$$
\begin{gathered}
x(t)=\frac{\alpha}{\eta \sinh \left(\gamma^{\prime \prime}-\gamma^{\prime}\right)}\left(\frac{\eta^{\prime} x^{\prime}}{\alpha^{\prime}} \sinh \left(\gamma^{\prime \prime}-\gamma\right)-\frac{\eta^{\prime \prime} x^{\prime \prime}}{\alpha^{\prime \prime}} \sinh \left(\gamma^{\prime}-\gamma\right)\right) \\
S_{c l}\left(x^{\prime \prime}, t^{\prime \prime} ; x^{\prime}, t^{\prime}\right)=\frac{1}{2} m^{\prime \prime} x^{\prime \prime 2}\left(\frac{\dot{\alpha}^{\prime \prime}}{\alpha^{\prime \prime}}-\frac{\dot{\eta}^{\prime \prime}}{\eta^{\prime \prime}}\right)-\frac{1}{2} m^{\prime} x^{\prime 2}\left(\frac{\dot{\alpha}^{\prime}}{\alpha^{\prime}}-\frac{\dot{\eta}^{\prime}}{\eta^{\prime}}\right) \operatorname{coth}\left(\gamma^{\prime \prime}-\gamma^{\prime}\right)+ \\
\frac{1}{2}\left(m^{\prime \prime} \dot{\gamma}^{\prime \prime} x^{\prime \prime 2}+m^{\prime} \dot{\gamma}^{\prime} x^{\prime 2}\right)-\frac{\eta^{\prime} \eta^{\prime \prime} \sqrt[\dot{\gamma}^{\prime} \dot{\gamma}^{\prime \prime} x^{\prime} x^{\prime \prime}]{\sinh \left(\gamma^{\prime \prime}-\gamma^{\prime}\right)}}{K\left(x^{\prime \prime}, t^{\prime \prime} ; x^{\prime}, t^{\prime}\right)=F\left(t^{\prime \prime}, t^{\prime}\right) x_{v}\left(S_{c l}\left(x^{\prime \prime}, t^{\prime \prime} ; x^{\prime}, t^{\prime}\right) / \mathrm{h}\right)} \\
F\left(t^{\prime \prime}, t^{\prime}\right)=\left[\frac{i}{2 \pi \hbar} \frac{\partial^{2}}{\partial x^{\prime} \partial x^{\prime \prime}} S_{c l}\left(x^{\prime \prime}, t^{\prime \prime} ; x^{\prime}, t^{\prime}\right)\right]^{\frac{1}{2}}
\end{gathered}
$$

Tachyon inflation

- Consider the tachyonic field T minimally coupled to Einstein's gravity

$$
S=-\frac{1}{16 \pi G} \int \sqrt{-g} R d^{4} x+S_{T}
$$

- Where R is Ricci scalar, g - determinant of the metric tensor and tachyon action

$$
\begin{aligned}
& S_{T}=\int \sqrt{-g} \mathcal{L}\left(T, \partial_{\mu} T\right) d^{4} x \\
& \mathcal{L}=-V(T) \sqrt{1+g^{\mu \nu} \partial_{\mu} T \partial_{\nu} T}
\end{aligned}
$$

- Friedman equation:

$$
H^{2} \equiv\left(\frac{\dot{a}}{a}\right)^{2}=\frac{1}{3 M_{P l}^{2}} \frac{V}{\left(1-\dot{T}^{2}\right)^{1 / 2}}
$$

- Energy-momentum conservation equation:

$$
\begin{gathered}
\dot{\rho}=-3 H(P+\rho) \\
\frac{\ddot{T}}{1-\dot{T}^{2}}+3 H \dot{T}+\frac{V^{\prime}}{V}=0
\end{gathered}
$$

Energy density and pressure:

$$
\begin{aligned}
& \rho=\frac{V(T)}{\sqrt{1-\dot{T}^{2}}} \\
& P=-V(T) \sqrt{1-\dot{T}^{2}}
\end{aligned}
$$

Tachyon inflation

- Introducing a constant dimensionless ratio

$$
X_{0}=\frac{\lambda T_{0}^{2}}{M_{P l}^{2}}, \quad \text { where } \lambda=\frac{M_{s}^{4}}{g_{s}(2 \pi)^{3}}
$$

$$
\tau=t \cdot T_{0}
$$

- The system of dimensionless equation is obtained

$$
x=\frac{T}{T_{0}}
$$

$$
U(x)=\frac{V(x)}{\lambda}
$$

$$
\begin{gathered}
\tilde{H}^{2}=\frac{X_{0}^{2}}{3} \frac{U(x)}{\sqrt{1-\dot{x}^{2}}} \\
\ddot{x}+X_{0} \sqrt{3 U(x)\left(1-\dot{x}^{2}\right)^{3 / 2}} \dot{x}+\frac{\left(1-\dot{x}^{2}\right)}{U(x)} \frac{d U(x)}{d x}=0
\end{gathered}
$$

$$
\tilde{H}=\frac{\hat{H}}{T_{0}}
$$

- In addition, the Friedman acceleration equation

$$
\dot{\tilde{H}}=-\frac{X_{0}^{2}}{2}(\tilde{P}+\tilde{\rho})
$$

$$
\begin{gathered}
\tilde{\rho}=\frac{U(T)}{\sqrt{1-\dot{x}^{2}}} \\
\tilde{P}=-U(x) \sqrt{1-\dot{x}^{2}}
\end{gathered}
$$

Tachyon inflation

- The slow-roll parameters

$$
\begin{gathered}
\epsilon_{1}=-\frac{\dot{H}}{H^{2}}, \quad \epsilon_{2}=\frac{1}{H} \frac{\ddot{H}}{\dot{H}}+2 \epsilon_{1} \\
\epsilon_{1}=\frac{3}{2} \dot{T}^{2}, \quad \epsilon_{2}=2 \frac{\ddot{T}}{H \dot{T}}
\end{gathered}
$$

- Number of e-folds

$$
N(t)=\int_{t_{i}}^{t_{e}} H(t) d t
$$

- In the slow-roll aproximation

$$
N(x)=X_{0}^{2} \int_{x_{i}}^{x_{e}} \frac{U(x)^{2}}{\left|U^{\prime}(x)\right|} d x, \quad \text { where } \varepsilon_{1}\left(x_{e}\right)=1
$$

- Observational parameters
- The scalar spectral index $n=1-2 \epsilon_{1}\left(x_{i}\right)-\epsilon_{2}\left(x_{i}\right)$
- The tensor-to-scalar ratio $r=16 \epsilon_{1}\left(x_{i}\right)$

Tachyon inflation

- Numerical results

$$
\begin{array}{cc}
45 \leq N \leq 75, & 5 \leq X_{0} \leq 25 \\
U(x)=\frac{1}{\tilde{x}^{4}} & \text { (left) } \\
U(x)=\frac{1}{\cosh (\tilde{x})} & \text { (right) }
\end{array}
$$

$$
\begin{array}{lllllllllll}
0.92 & 0.925 & 0.93 & 0.935 & 0.94 & 0.945 & 0.95 & 0.955 & 0.96 & 0.965 & 0.97
\end{array}
$$

Randall Sundrum Model

- Braneworld cosmology, RSII metric
- Radion field: $\phi(x)$

$$
d s_{(f)}^{2}=\left(e^{-2 l y}+\phi\right) g^{g \nu} d x^{\mu} d x^{\nu}-\left(\frac{e^{-2 k y}}{e^{-2 k y}+\phi}\right)^{2} d y^{2}
$$

- Consider an additional 3-brane moving in the bulk; The 5th coordinate $y(x)$ can be treated as a dynamical scalar (tachyon) field $\theta(x)=k^{-1} e^{k_{y}(x)}$

$$
\begin{aligned}
& S_{\text {brane }}=-\int d^{4} x \sqrt{-g} \frac{\sigma}{k^{4} \theta^{4}}\left(1+k^{2} \theta^{2} \phi\right)^{2} \sqrt{1-\frac{g^{\mu \nu} \theta_{, \mu} \theta_{, v}}{\left(1+k^{2} \theta^{2} \phi\right)^{3}}} \\
& \phi=0 \Rightarrow S_{\text {brane }}^{(0)}=-\int d^{4} x \sqrt{-g} \frac{\sigma}{k^{4} \theta^{4}} \sqrt{1-g^{\mu v} \theta_{, \mu} \theta_{, v}}
\end{aligned}
$$

Randal-Sundrum model and tachyon-like inflation

- Inflation is driven by the tachyon field originating in string theory
- A simple model of this kind is based on the second Randall-Sundrum (RSII) mode
- The RSII model is a $4+1$ dimensional Anti de Sitter (AdS_{5}) universe containing two 3-branes with opposite tensions separated in the fifth dimension: observers reside on the positive tension brane and the negative tension brane is pushed off to infinity
- The fluctuation of the interbrane distance along the extra dimension implies the existence of the radion.
- Radion - a massless scalar field that causes a distortion of the bulk geometry.
- The bulk spacetime of the extended RSII model in Fefferman-Graham coordinates is described by the metric

[^0]
Randal-Sundrum model and tachyon-like inflation

8 The brane Lagrangian, after integrating out the fifth coordinate

$$
S=\int d^{4} x \sqrt{-g}\left(-\frac{R}{16 \pi G}+\frac{1}{2} g^{\mu \nu} \Phi_{, \mu} \Phi_{, \nu}\right)-\underbrace{\int d^{4} x \sqrt{-g} \frac{\sigma}{k^{4} \Theta^{4}}\left(1+k^{2} \Theta^{2} \eta\right)^{2} \sqrt{1-\frac{g^{\mu \nu} \Theta_{, \mu} \Theta_{, \nu}}{\left(1+k^{2} \Theta^{2} \eta\right)^{3}}}}_{S_{b r}}
$$

- Where Φ is the radion field, Θ is the tachyon field, k is the inverse of the AdS curvature radius $k=1 / \ell$ and η is $\eta=\sinh ^{2}(\sqrt{4 / 3 \pi G} \Phi)$
- In the absence of radion $S_{b r}$ is the tachyon condensate $S_{b r}^{(0)}=-\int d^{4} x \sqrt{-g} \frac{\lambda}{\Theta^{4}} \sqrt{1-g^{\prime \mu} \Theta_{\mu} \Theta_{, v}}$
- The combined brane-radion Lagrangian is

$$
\mathcal{L}=\frac{1}{2} g^{\mu \nu} \Phi_{, \mu} \Phi_{, v}-\frac{\lambda \psi^{2}}{\Theta^{4}} \sqrt{1-\frac{g^{\mu \nu} \Theta_{, \mu} \Theta_{, v}}{\psi^{3}}} \quad \lambda=\frac{\sigma}{k^{4}} \quad \psi=1+k^{2} \Theta^{2} \eta
$$

- In the spatially flat RS cosmology the Hubble expansion rate H is related to Hamiltonian via modified Friedman equation

$$
H \equiv \frac{\dot{a}}{a}=\sqrt{\frac{8 \pi G}{3} \mathcal{H}\left(1+\frac{2 \pi G}{3 k^{2}} \mathcal{H}\right)}
$$

Randal-Sundrum model

- The dimensionless Hamiltonian's equations are obtained

$$
\begin{aligned}
\dot{\phi} & =\pi_{\phi} \\
\dot{\theta} & =\frac{\theta^{4} \psi \pi_{\theta}}{\sqrt{1+\theta^{8} \pi_{\theta}^{2} / \psi}} \\
\dot{\pi}_{\phi} & =-3 h \pi_{\phi}-\frac{\psi}{2 \theta^{2}} \frac{4+3 \theta^{8} \pi_{\theta}^{2} / \psi}{\sqrt{1+\theta^{8} \pi_{\theta}^{2} / \psi}} \eta^{\prime} \\
\dot{\pi}_{\theta} & =-3 h \pi_{\theta}+\frac{\psi}{\theta^{5}} \frac{4-3 \theta^{10} \eta \pi_{\theta}^{2} / \psi}{\sqrt{1+\theta^{8} \pi_{\theta}^{2} / \psi}}
\end{aligned}
$$

A combined dimensionless coupling

$$
\searrow \kappa^{2}=8 \pi \lambda G k^{2}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { The Hubble } \\
\text { expansion rate }
\end{array} h \equiv \frac{\dot{a}}{a}= \sqrt{\frac{\kappa^{2}}{3} \bar{\rho}\left(1+\frac{\kappa^{2}}{12} \bar{\rho}\right)} \\
& \psi=1+\theta^{2} \eta, \\
& \eta=\sinh ^{2}\left(\sqrt{\frac{\kappa^{2}}{6}} \phi\right), \\
& \eta^{\prime}=\frac{d \eta}{d \phi}=\sqrt{\frac{\kappa^{2}}{6}} \sinh \left(\sqrt{\frac{2 \kappa^{2}}{3}} \phi\right), \\
& \xrightarrow{\text { preassure }} \bar{p}=\frac{1}{2} \dot{\phi}^{2}-\frac{\psi^{2}}{\theta^{4}} \sqrt{1-\dot{\theta}^{2} / \psi^{3}},
\end{aligned}
$$

$$
\xrightarrow{\text { energy density }} \bar{\rho}=\frac{1}{2} \dot{\phi}^{2}+\frac{\psi^{2}}{\theta^{4}} \frac{1}{\sqrt{1-\dot{\theta}^{2} / \psi^{3}}}
$$

Randal-Sundrum model

- Observational parameters: the tensor-to-scalar ration (r) and scalar spectral index $\left(n_{s}\right)$

$$
\begin{aligned}
& r=16 \epsilon_{1}\left(\theta_{\mathrm{i}}\right)\left[1-\frac{1}{6} \epsilon_{1}\left(\theta_{\mathrm{i}}\right)+C \epsilon_{2}\left(\theta_{\mathrm{i}}\right)\right] \\
& n_{\mathrm{s}}=1-2 \epsilon_{1}\left(\theta_{\mathrm{i}}\right)-\epsilon_{2}\left(\theta_{\mathrm{i}}\right)-\left[2 \epsilon_{1}^{2}\left(\theta_{\mathrm{i}}\right)+\left(2 C+\frac{8}{3}\right) \epsilon_{1}\left(\theta_{\mathrm{i}}\right) \epsilon_{2}\left(\theta_{\mathrm{i}}\right)+C \epsilon_{2}\left(\theta_{\mathrm{i}}\right) \epsilon_{3}\left(\theta_{\mathrm{i}}\right)\right]
\end{aligned}
$$

- Numerical results:

$$
\begin{aligned}
& 60 \leq N \leq 120,1 \leq \kappa \leq 12 \text { and } 0 \leq \phi_{0} \leq 0.5(\text { top }) \\
& 115 \leq N \leq 120, \phi_{0}=0.05, \kappa=1.25(\text { bottom })
\end{aligned}
$$

Beyond

- Our understanding of tachyon matter, especially its quantum aspects is still quite pure.
- Perturbative solutions for classical particles analogous to the tachyons offer many possibilities in quantum mechanics, quantum and string field theory and cosmology on archimedean and nonarchimedean spaces.
- Reverse Engineering Method-REM remains a valuable auxiliary tool for investigation on tachyonic-universe evolution for nontrivial models.
- It was shown that the theory of p-adic inflation can be compatible with CMB observations. Quantization of tachyons could allow us to consider even more realistic inflationary models including quantum fluctuations and to test their p-adic aspects.
- Attractor behavior of the original DBI based Lagrangian model has been approved in real case, but not yet tested in a p-adic and adelic context

Some references

- G. S. Djordjevic, B. Dragovich, Mod. Phys. Lett. A 12(20), 1455 (1997).
- G. S. Djordjevic, B. Dragovich, L. Nesic, Inf. Dim. Analys, Quant. Prob. and Rel. Topics 06(02), 179-195 (2003).
- I.Ya.Aref'eva, B.Dragovich, P.Frampton and I.V.Volovich, Int. J. Mod.
- Phys. A6, 4341 (1991).
- G. S. Djordjevic, B. Dragovich, L. Nesic, I. V. Volovich, Int. Jour. Mod. Phys. A 17(10), 1413-1433 (2002).
- A. Sen, Journal of High Energy Physics 2002(04), 048\{048 (2002).
- D. D. Dimitrijevic, G. S. Djordjevic, L. Nesic, Fortschritte der Physik 56(4-5), 412-417 (2008).
- G.S. Djordjevic and Lj. Nesic, Tachyon-like Mechanism in Quantum Cosmology and Inflation, in Modern trends in Strings, Cosmology and Particles, Monographs Series: Publications of the Astronomical Observatory of Belgrade, No 88, 75-93 (2010).
- D. D. Dimitrijevic, G. S. Djordjevic and M. Milosevic, Romanian Reports in Physics, vol. 68, no. 1 (2016).
- G. S. Djordjevic, D. D. Dimitrijevic and M. Milosevic, Romanian Journal of Physics, vol. 61, no. 1-2 (2016).
- N. Bilic, G. S. Djordjevic, D. D. Dimitrijevic M. Milosevic and M. Stojanovic, Tachyon inflation in the holographic braneworld, JCAP 1908 (2019) 034
- G.S. Djordjevic and D. Delibasic, Tachyonic Field in a FRLW Spacetime, (in preparation)

Acknowledgement

The Work is supported by the Serbian Ministry of Education and Science Contract No. 451-03-9/2021-14/200124

The financial support under the Abdus Salam International Centre for Theoretical Physics (ICTP) - Southeastern European Network in Mathematical and Theoretical Physics (SEENET-MTP) Project NT-03 "Cosmology - Classical and Quantum Challenges", COST QG-MM 18108 project, and CERN-TH visiting program are kindly acknowledged..

Thank you!

[^0]: The bulk space-time metric

